Search results for " synchronous motor"
showing 10 items of 23 documents
Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches
2005
In this paper, a new loss minimization control algorithm for inverter-fed permanent-magnet synchronous motors (PMSMs), which allows for the reduction of the power losses of the electric drive without penalty on its dynamic performance, is analyzed, experimentally realized, and validated. In particular, after a brief recounting of two loss minimization control strategies, namely, the "search control" and the "loss-model control," both a new modified dynamic model of the PMSM (which takes into account the iron losses) and an innovative "loss-model" control strategy are presented. Experimental tests on a specific PMSM drive employing the proposed loss minimization algorithm have been performed…
A model of a linear synchronous motor based on distribution theory
2012
The fundamental idea of this paper is to use the distribution theory to analyze linear machines in order to include in the mathematical model both ideal and non ideal features. This paper shows how distribution theory can be used to establish a mathematical model able to describe both the ordinary working condition of a Linear Synchronous Motor (LSM) as well the role of the unavoidable irregularities and non ideal features.
Comparison of three control drive systems for interior permanent magnet synchronous motors
2017
In a previous paper, we proposed a control strategy for interior permanent synchronous motors, which takes into account also the reduction of the motor power losses. The novelty of the suggested approach is that it takes into consideration the variations of all the motor parameters that have an influence on its efficiency. In order to verifyon the field the effectiveness of this new method, we implemented the proposed loss model algorithm in a control drive system and compared its performances, in terms of energy losses with respect to other conventional techniques.
Development of a Fractional PI controller in an FPGA environment for a Robust High-Performance PMSM Electrical Drive
2021
This paper proposes the application of a Fractional Order PI (FOPI) in the speed loop of a high performance PMSM drive to obtain both speed tracking and load rejection performance with a 1-DOF Proportional Integral (PI) controller and 2-DOF Integral Proportional (IP) controller. Hardware validation was implemented in Field Programmable Gate Array on the LabVIEW environment, based on the National Instruments System-on-Module sbRIO-9651 with Xilinx Zynq-7020. Simulation and experimental results are presented to comparing the performance of a PI, IP and FOPI controllers in the speed loop of a Field Oriented Control (FOC) of a Permanent Magnet Synchronous Motor (PMSM).
Analysis a DSP Implementation and Experimental Validation of a Loss Minimization Algorithm Applied to Permanent Magnet Synchronous Motor Drives
2004
In this paper a new loss minimization control algorithm for inverter-fed permanent-magnet synchronous motors (PMSM), which allows to reduce the power losses of the electric drive without penalty on its dynamic performances, is analyzed, experimentally realized and validated. In particular, after a brief recall of two loss minimization control strategies (the "search control" and the "loss-model control"), both a modified dynamic model of the PMSM, which takes into account the iron losses, and a "loss-model" control strategy, are treated. Experimental tests on a specific PMSM drive employing the proposed loss minimization algorithm were performed aiming to validate the actual implementation.…
The role of the effect of manufacturing tolerances on a tubular linear ferrite motor
2015
Electric machines are often designed without considering workmanship and materials tolerances. Their manufacturing process involves a series of steps, starting with raw materials and ending with the machine assembly. In each of these steps occur deviations due, for instance, to mistakes in positioning tools or to the tolerances in the electrical and magnetic characteristics of the materials. These deviations may cause unwanted parasitic effects such as torque ripple, losses or acoustic noise. Such effects have to be considered especially in machines used in industrial drives for high performance applications. Moreover the tolerances in the magnetic materials have a considerable effect on th…
Enhanced loss model algorithm for interior permanent magnet synchronous machines
2017
This paper presents an experimental study on the impact of the parameter variations over the performances of a LMA (Loss Model Algorithm) designed for an IPMSM (Interior Permanent Magnet Synchronous Machine). In a previous work, the characterization was carried out by assessing, for several working conditions, the motor parameters that influence the motor efficiency. The proposed enhanced loss model algorithm is implemented in a rapid prototyping system and its performances, in term of efficiency, are compared with other control systems, obtaining promising results.
Detection and Discrimination of Inter-Turn Short Circuit and Demagnetization Faults in PMSMs Based on Structural Analysis
2021
This paper presents a fault diagnosis method based on structural analysis of permanent magnet synchronous motors (PMSMs), focusing on detecting and discriminating two of the most common faults in PMSMs, namely demagnetization and inter-turn short circuit faults. The structural analysis technique uses the dynamic mathematical model of the PMSM in matrix form to evaluate the system’s structural model. After obtaining the analytical redundancy using the over-determined part of the system, it is divided into redundant testable sub-models. Four structured residuals are designed to detect and isolate the investigated faults, which are applied to the system in different time intervals. Finally, th…
Interior permanent magnet synchronous motors: Impact of the variability of the parameters on their efficiency
2016
In the scientific literature, various authors presented different control strategies aimed to increase the efficiency of the interior permanent magnet synchronous motors. These strategies, starting from a well-known mathematical model of the dynamic behaviour of the motor, are able to reduce the power losses acting on the magnetizing component of the stator current. However, none of the proposed approaches takes into account that, varying the working conditions of the motor, also the values of the parameters, which have an impact on the power losses, can vary. In this paper, therefore, starting from an accurate measurement of the motor characteristics for various values of speed and load, w…
Experimental Investigation of Efficiency Map for an Inverter-Fed Surface-Mount Permanent Magnet Synchronous Motor
2019
Losses in inverter-fed permanent magnet motors are underestimated by using analytical or numerical approach since additional losses due to extra harmonics of the frequency converter are normally skipped. Further, losses in switches and passive components of the converter and the effect of switching frequencies cannot be numerically taken into consideration. Loss-minimizing control and proper efficiency analysis of inverter-fed permanent magnet motors cannot be achieved if an efficiency map is built based on a numerical investigation of the motors alone. This works first reviews losses in a surface-mount permanent magnet synchronous motor (SPMSM) and frequency converters. The efficiency map …